Cardiorespiratory Physiotherapy, Critical Care and Rehabilitation
https://cpcrjournal.org/article/doi/10.4322/2675-9977.cpcr.42060
Cardiorespiratory Physiotherapy, Critical Care and Rehabilitation
Original Research

In-hospital mobilization after cardiac surgery: investigation of a dose-effect of once- and twice-daily exercise on cardiac autonomic modulation

Renata Gonçalves Mendes; Camila Bianca Falasco Pantoni; Rodrigo Polaquini Simões; Luciana Ditomaso-Luporini; Flávia Cristina Rossi Caruso Bonjorno; Erika Zavaglia Kabbach; Audrey Borghi-Silva

Downloads: 5
Views: 134

Resumo

Background: Coronary artery bypass surgery (CABG) implies in impairment of cardiac autonomic modulation (CAM). In-hospital mobilization positively affects CAM; however, it is not known whether higher exercise dosage would provide the same benefits in CAM as lower dosage in patients post-CABG. Aims: To investigate the dose-effect of an exercise inpatient program performed once or twice-daily on cardiac autonomic modulation post-CABG. Design: Prospective trial with a quasiexperimental design. Methods: Thirty patients of both sexes with a diagnosis of coronary heart disease and first-time post-CABG were allocated in a non-random manner into GEX1 (n = 10) and GEX2 (n = 10), composed of patients engaged in one and two daily exercise sessions plus usual care (breathing exercises, education with no systematized mobilization exercise program), respectively; and control group (CG, n = 10), composed of those who only received usual care. Patients underwent a mobilization protocol until discharge, which included a progressive five steps of active-assistive exercises of lower/upper limbs. Heart rate (HR) and R-wave intervals (RRi) were recorded by heart rate monitor at basal condition and discharge time. CAM was assessed by heart rate variability (HRV). Results: At discharge, the higherdose group (GEX2) showed significant higher values of: parasympathetic (RMSSD: 7.9±1.3 ms vs 4.6±0.4 ms) and overall CAM indexes (STD RR: 7.5±1.1 ms vs 4.8±0.5 ms and TINN (38±6.4 ms vs 23±2.8 ms) compared with CG, respectively. In addition, mean HR (GEX2: 88.1 ±12.3 bpm; GEX1: 79.4±5.7 bpm, CG: 100.4±10.1 bpm) and mean RR (GEX2: 694.0±101.8 bpm; GEX1: 759.1±57.0 bpm, CG: 602.8±59.1 bpm) were different to exercise groups compared to controls regardless dosage. However, there was no significant difference between the exercise groups (GEX1 and GEX2). Conclusions: Regardless dosage, post-CABG patients who engaged in a mobilization-exercise program demonstrated better cardiac autonomic modulation at discharge compared with the control group. The results are encouraging further investigation in the field of in-hospital exercise rehabilitation dosage on cardiac autonomic modulation in a more comprehensive sample to strengthen the findings.

Palavras-chave

Autonomic Nervous System; Coronary Artery Disease; Exercise; Rehabilitation; Cardiac Rehabilitation.

References

1. Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS Guidelines on myocardial Revascularization. Eur Heart J. 2019;40(2):87-165. http://dx.doi.org/10.1093/eurheartj/ehy394. PMid:30165437.

2. Santos PMR, Ricci NA, Suster ÉAB, Paisani DM, Chiavegato LD. Effects of early mobilisation in patients after cardiac surgery: a systematic review. Physiotherapy. 2017 Mar;103(1):1-12. http://dx.doi.org/10.1016/j.physio.2016.08.003. PMid:27931870.

3. Herdy AH, Marcchi PL, Vila A, Tavares C, Collaço J, Niebauer J, et al. Pre- and postoperative cardiopulmonary rehabilitation in hospitalized patients undergoing coronary artery bypass surgery: a randomized controlled trial. Am J Phys Med Rehabil. 2008;87(9):714-9. http://dx.doi.org/10.1097/PHM.0b013e3181839152. PMid:18716482.

4. Monteleone S, Dalla Toffola E, Emiliani V, Ricotti S, Bruggi M, Conte T, et al. Recovery of deambulation after cardiothoracic surgery: a single center experience. Eur J Phys Rehabil Med. 2015;51(6):763-71. PMid:25800502.

5. Mendes RG, Simões RP, Costa FDSM, Pantoni CBF, Di Thommazo L, Luzzi S, et al. Short-term supervised inpatient physiotherapy exercise protocol improves cardiac autonomic function after coronary artery bypass graft surgery − a randomised controlled trial. Disabil Rehabil. 2010;32(16):1320-7. http://dx.doi.org/10.3109/09638280903483893. PMid:20156053.

6. Pantoni CB, Mendes RG, Di Thommazo-Luporini L, Simões RP, Amaral-Neto O, Arena R, et al. Recovery of linear and nonlinear heart rate dynamics after coronary artery bypass grafting surgery. Clin Physiol Funct Imaging. 2014;34(6):449-56. http://dx.doi.org/10.1111/cpf.12115. PMid:24666784.

7. Laitio TT, Mäkikallio TH, Huikuri HV, Kentala ES, Uotila P, Jalonen JR, et al. Relation of heart rate dynamics to the occurrence of myocardial ischemia after coronary artery bypass grafting. Am J Cardiol. 2002;89(10):1176-81. http://dx.doi.org/10.1016/S0002-9149(02)02300-7. PMid:12008171.

8. Lakusic N, Mahovic D, Kruzliak P, Cerkez Habek J, Novak M, Cerovec D. Changes in heart rate variability after coronary artery bypass grafting and clinical importance of these findings. BioMed Res Int. 2015;2015:680515. http://dx.doi.org/10.1155/2015/680515. PMid:26078960.

9. Westerdahl E, Möller M. Physiotherapy-supervised mobilization and exercise following cardiac surgery: a national questionnaire survey in Sweden. J Cardiothorac Surg. 2010;5(1):67. http://dx.doi.org/10.1186/1749-8090-5-67. PMid:20738852.

10. Vidoni ED, Johnson DK, Morris JK, Van Sciver A, Greer CS, Billinger SA, et al. Dose-Response of Aerobic Exercise on Cognition: A Community-Based, Pilot Randomized Controlled Trial. PLoS One. 2015;10(7):e0131647. http://dx.doi.org/10.1371/journal.pone.0131647. PMid:26158265.

11. Zech A, Hendrich S, Pfeifer K. Association between exercise therapy dose and functional improvements in the early postoperative phase after hip and knee arthroplasty: an observational study. PM R. 2015;7(10):1064-72. http://dx.doi.org/10.1016/j.pmrj.2015.04.008. PMid:25892356.

12. Papathanasiou G, Tsamis N, Georgiadou P, Adamopoulos S. Beneficial effects of physical training and methodology of exercise prescription in patients with heart failure. Hellenic J Cardiol. 2008;49(4):267-77. PMid:18935714.

13. Catai A, Pastre C, Godoy M, Silva E, Takahashi A, Vanderlei L. Heart rate variability: are you using it properly? Standardisation checklist of procedures. Braz J Phys Ther. 2020;24(2):91-102. http://dx.doi.org/10.1016/j.bjpt.2019.02.006. PMid:30852243.

14. Variability HR. Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93(5):1043-65. PMid:8598068.

15. Vanderlei LCM, Pastre CM, Hoshi RA, Carvalho TD, Godoy MF. Basic notions of heart rate variability and its clinical applicability. Rev Bras Cir Cardiovasc. 2009;24(2):205-17. http://dx.doi.org/10.1590/S0102-76382009000200018. PMid:19768301.

16. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017 Sep 28;5:258. http://dx.doi.org/10.3389/fpubh.2017.00258. PMid:29034226.

17. Dalleck LC, Allen BA, Hanson BA, Borresen EC, Erickson ME, De Lap SL. Dose-response relationship between moderate-intensity exercise duration and coronary heart disease risk factors in postmenopausal women. J Womens Health. 2009;18(1):105-13. http://dx.doi.org/10.1089/jwh.2008.0790. PMid:19132882.

18. Foulds HJ, Bredin SS, Charlesworth SA, Ivey AC, Warburton DE. Exercise volume and intensity: a dose-response relationship with health benefits. Eur J Appl Physiol. 2014;114(8):1563-71. http://dx.doi.org/10.1007/s00421-014-2887-9. PMid:24770699.

19. Friedenreich CM, Neilson HK, O’Reilly R, Duha A, Yasui Y, Morielli AR, et al. Effects of a high vs moderate volume of aerobic exercise on adiposity outcomes in postmenopausal women: a randomized clinical trial. JAMA Oncol. 2015;1(6):766-76. http://dx.doi.org/10.1001/jamaoncol.2015.2239. PMid:26181634.

20. Lee IM, Sesso HD, Oguma Y, Paffenbarger RS Jr. Relative Intensity of Physical Activity and Risk of Coronary Heart Disease. Circulation. 2003;107(8):1110-6. http://dx.doi.org/10.1161/01.CIR.0000052626.63602.58. PMid:12615787.

21. Lee IM, Skerrett PJ. Physical activity and all-cause mortality: what is the dose-response relation? Med Sci Sports Exerc. 2001;33(6, Suppl.):S459-94. http://dx.doi.org/10.1097/00005768-200106001-00016. PMid:11427772.

22. Warburton DE, Charlesworth S, Ivey A, Nettlefold L, Bredin SS. A systematic review of the evidence for Canada’s Physical Activity Guidelines for Adults. Int J Behav Nutr Phys Act. 2010;7(1):39. http://dx.doi.org/10.1186/1479-5868-7-39. PMid:20459783.

23. Woodlief TL, Carnero EA, Standley RA, Distefano G, Anthony SJ, Dubis GS, et al. Dose response of exercise training following rouxen-Y gastric bypass surgery: a randomized trial. Obesity (Silver Spring). 2015;23(12):2454-61. http://dx.doi.org/10.1002/oby.21332. PMid:26537198.

24. Anderson L, Oldridge N, Thompson DR, Zwisler AD, Rees K, Martin N, et al. Exercise-based cardiac rehabilitation for coronary heart disease: cochrane systematic review and meta-analysis. J Am Coll Cardiol. 2016;67(1):1-12. http://dx.doi.org/10.1016/j.jacc.2015.10.044. PMid:26764059.

25. Mendes RG, Simões RP, Costa FSM, Pantoni CB, Di Thommazo L, Luzzi S, et al. Left-ventricular function and autonomic cardiac adaptations after short-term inpatient cardiac rehabilitation: a prospective clinical trial. J Rehabil Med. 2011;43(8):720-7. http://dx.doi.org/10.2340/16501977-0843. PMid:21732006.

26. Pantoni CB, Di Thommazo-Luporini L, Mendes RG, Caruso FC, Mezzalira D, Arena R, et al. continuous positive airway pressure during exercise improves walking time in patients undergoing inpatient cardiac rehabilitation after coronary artery bypass graft surgery: a randomized controlled trial. J Cardiopulm Rehabil Prev. 2016;36(1):20-7. http://dx.doi.org/10.1097/HCR.0000000000000144. PMid:26468628.

27. Huikuri HV. Heart rate dynamics and vulnerability to ventricular tachyarrhythmias. Ann Med. 1997;29(4):321-5. http://dx.doi.org/10.3109/07853899708999355. PMid:9375990.

28. Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 2014;114(6):1004-21. http://dx.doi.org/10.1161/CIRCRESAHA.113.302549. PMid:24625726.

29. Soliman EZ, Elsalam MA, Li T. The relationship between high resting heart rate and ventricular arrhythmogenesis in patients referred to ambulatory 24 h electrocardiographic recording. EP Europace. 2010;12(2):261-5. http://dx.doi.org/10.1093/europace/eup344. PMid:19887457.

30. Ksela J, Suwalski P, Kalisnik JM, Avbelj V, Suwalski G, Gersak B. Assessment of Nonlinear Heart Rate Dynamics after Beating-Heart Revascularization. Heart Surg Forum. 2009;12(1):E10-6. http://dx.doi.org/10.1532/HSF98.20081116. PMid:19233759.

31. Caruso FR, Arena R, Phillips SA, Bonjorno JC Jr, Mendes RG, Arakelian VM, et al. Resistance exercise training improves heart rate variability and muscle performance: a randomized controlled trial in coronary artery disease patients. Eur J Phys Rehabil Med. 2015;51(3):281-9. PMid:25384514.

32. Murad K, Brubaker PH, Fitzgerald DM, Morgan TM, Goff DC Jr, Soliman EZ, et al. Exercise training improves heart rate variability in older patients with heart failure: a randomized, controlled, singleblinded trial. Congest Heart Fail. 2012;18(4):192-7. http://dx.doi. org/10.1111/j.1751-7133.2011.00282.x. PMid:22536936.

33. Routledge FS, Campbell TS, McFetridge-Durdle JA, Bacon SL. Improvements in heart rate variability with exercise therapy. Can J Cardiol. 2010;26(6):303-12. http://dx.doi.org/10.1016/S0828-282X(10)70395-0. PMid:20548976.

34. Santos-Hiss MD, Melo RC, Neves VR, Hiss FC, Verzola RM, Silva E, et al. Effects of progressive exercise during phase I cardiac rehabilitation on the heart rate variability of patients with acute myocardial infarction. Disabil Rehabil. 2011;33(10):835-42. http://dx.doi.org/10.3109/09638288.2010 .514016. PMid:20809873.

35. Chowdhary S, Townend JN. Role of nitric oxide in the regulation of cardiovascular autonomic control. Clin Sci. 1999;97(1):5-17. http://dx.doi.org/10.1042/CS19980399. PMid:10369789.

36. Townend JN, al-Ani M, West JN, Littler WA, Coote JH. Modulation of cardiac autonomic control in humans by angiotensin II. Hypertension. 1995;25(6):1270-5. http://dx.doi.org/10.1161/01.HYP.25.6.1270. PMid:7768573.

37. Komatsu T, Kimura T, Sanchala V, Shibutani K, Shimada Y. Effects of fentanyl-diazepam-pancuronium anesthesia on heart rate variability: a spectral analysis. J Cardiothorac Vasc Anesth. 1992;6(4):444-8. http://dx.doi.org/10.1016/1053-0770(92)90011-U. PMid:1498300.

38. Murphy DA, Armour JA. Influences of cardiopulmonary bypass, temperature, cardioplegia, and topical hypothermia on cardiac innervation. J Thorac Cardiovasc Surg. 1992;103(6):1192-9. http://dx.doi.org/10.1016/S0022-5223(19)34887-1. PMid:1597985.


Submitted date:
11/07/2020

Accepted date:
02/21/2021

6155baf5a953957109642184 cpcr Articles
Links & Downloads

Cardiorespir Physiother Crit Care Rehabil

Share this page
Page Sections