Does the COPD assessment test associate to skeletal muscle dysfunction in individuals with chronic obstructive pulmonary disease?
Tamires Daros dos Santos; Adriane Schmidt Pasqualoto; Felipe Fagundes Pereira; Everton Ludke; Aron Ferreira da Silveira; Isabella Martins de Albuquerque
Resumo
Background: Skeletal muscles provide the mechanical basis for breathing and movement, and skeletal muscle dysfunction which is frequently observed in individuals with chronic obstructive pulmonary disease (COPD) has important clinical implications. Aims: The objective of the present study was to investigate whether the COPD assessment test (CAT) score may be associated with quadriceps muscle thickness, handgrip strength, peripheral muscle endurance and respiratory muscle strength in individuals with COPD enrolled in a pulmonary rehabilitation program. Methods: This is a cross-sectional study with evaluation of the following outcomes: quadriceps muscle thickness (ultrasonography), handgrip strength (muscle strength dynamometer), peripheral muscle endurance (30-second sit-to-stand test) and respiratory muscle strength (manovacuometry). Results: Twenty-three individuals (65 ± 10.1 years; GOLD I (n=2), II (n=8), III (n=7) and IV (n=6)) participated in the study. The CAT score correlated negatively and moderately with handgrip strength (r=-0.655; p<0.001), negatively and moderately with quadriceps muscle thickness (r=-0.562; p=0.005) and peripheral muscle endurance (r=-0.573; p=0.004). There was no correlation between CAT score and respiratory muscle strength. The multiple linear regression model including the variables quadriceps muscle thickness, handgrip strength and peripheral muscle endurance was the best to predict the CAT score, explaining 65% of the variance. Conclusions: Our results suggest that the CAT score was associated with skeletal muscle dysfunction through quadriceps muscle thickness, handgrip strength and peripheral muscle endurance in a sample composed predominantly of women with COPD, ex-smokers or without previous smoking history enrolled in a pulmonary rehabilitation program.
Palavras-chave
References
1. Global Initiative for Chronic Obstructive Pulmonary Disease. Global strategy for the diagnosis, management, and prevention of Chronic Obstructive Pulmonary Disease [Internet]. GOLD; 2019 [cited 2020 July 18]. Available from: https://goldcopd.org/wp-content/uploads/2018/11/GOLD-2019-POCKET-GUIDE-FINAL_WMS.pdf
2. Barnes PJ, Vestbo J, Calverley PM. The pressing need to redefine “COPD”. Chronic Obstr Pulm Dis (Miami). 2019;6(5):380-3. http://dx.doi.org/10.15326/jcopdf.6.5.2019.0173. PMid:31710794.
3. Lee H, Jhun BW, Cho J, Yoo KH, Lee JH, Kim DK, et al. Different impacts of respiratory symptoms and comorbidities on COPD-specific health- related quality of life by COPD severity. Int J Chron Obstruct Pulmon Dis. 2017;12(1):3301-10. http://dx.doi.org/10.2147/COPD.S145910. PMid:29180860.
4. Lima TRL, Almeida VP, Ferreira AS, Guimarães FS, Lopes AJ. Handgrip strength and pulmonary disease in the elderly: what is the link? Aging Dis. 2019;10(5):1109-29. http://dx.doi.org/10.14336/AD.2018.1226. PMid:31595206.
5. Albarrati AM, Gale NS, Enright S, Munnery MM, Cockcroft JR, Shale DJ. A simple and rapid test of physical performance in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2016;11(1):1785-91. http://dx.doi.org/10.2147/COPD.S106151. PMid:27536090.
6. Kharbanda S, Ramakrishna A, Krishnan S. Prevalence of quadriceps muscle weakness in patients with COPD and its association with disease severity. Int J Chron Obstruct Pulmon Dis. 2015;10:1727-35. http://dx.doi.org/10.2147/COPD.S87791. PMid:26366065.
7. Ye X, Wang M, Xiao H. Echo intensity of the rectus femoris in stable COPD patients. Int J Chron Obstruct Pulmon Dis. 2017;12:3007-15. http://dx.doi.org/10.2147/COPD.S143645. PMid:29075109.
8. Evans RA, Kaplovitch E, Beauchamp MK, Dolmage TE, Goldstein RS, Gillies C, et al. Is quadriceps endurance reduced in COPD? A systematic review. Chest. 2015;147(3):673-84. http://dx.doi.org/10.1378/chest.14-1079. PMid:25340989.
9. Kim NS, Seo JH, Ko MH, Park SH, Kang SW, Won YH. Respiratory muscle strength in patients with chronic obstructive pulmonary disease. Ann Rehabil Med. 2017;41(4):659-66. http://dx.doi.org/10.5535/arm.2017.41.4.659. PMid:28971051.
10. Jaitovich A, Barreiro E. Skeletal muscle dysfunction in chronic obstructive pulmonary disease what we know and can do for our patient. Am J Respir Crit Care Med. 2018;198(2):175-86. http://dx.doi.org/10.1164/rccm.201710-2140CI. PMid:29554438.
11. Barreiro E. Skeletal muscle dysfunction in COPD: novelties in the last decade. Arch Bronconeumol. 2017;53(2):43-4. http://dx.doi. org/10.1016/j.arbr.2016.08.006. PMid:27641307.
12. Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigaré R, et al. An Official American Thoracic Society/European Respiratory Society Statement: Update on Limb Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2014;189(9):e15-62. http://dx.doi.org/10.1164/rccm.201402-0373ST. PMid:24787074.
13. Karloh M, Rocha SAV, Pizzichini MMM, Cavalli F, Matte DL, Pizzichini E. Is the COPD Assessment Test sensitive for differentiating COPD patients from active smokers and nonsmokers without lung function impairment? A population-based study. J Bras Pneumol. 2018;44(3):213-9. http://dx.doi.org/10.1590/s1806-37562017000000149. PMid:30043888.
14. Karloh M, Mayer AF, Maurici R, Pizzichini MMM, Jones PW, Pizzichini E. The COPD assessment test: what do we know so far? a systematic review and meta-analysis about clinical outcomes prediction and classification of patients into GOLD stages. Chest. 2016;149(2):413-25. http://dx.doi.org/10.1378/chest.15-1752. PMid:26513112.
15. Silva GPF, Morano MTAP, Viana CMS, Magalhães CBA, Pereira EDB. Portuguese-language version of the COPD Assessment Test: validation for use in Brazil. J Bras Pneumol. 2013;39(4):402-8. http://dx.doi.org/10.1590/S1806-37132013000400002. PMid:24068260.
16. Jones PW, Tabberer M, Chen WH. Creating scenarios of the impact of COPD and their relationship to COPD Assessment Test (CAT™) scores. BMC Pulm Med. 2011;11:42. http://dx.doi.org/10.1186/1471-2466-11-42. PMid:21835018.
17. American Thoracic Society/European Respiratory Society. ATS/ERS statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166(4):518-624. http://dx.doi.org/10.1164/rccm.166.4.518. PMid:12186831.
18. Pessoa IMBS, Houri M No, Montemezzo D, Silva LAM, Andrade ADD, Parreira V. Predictive equations for respiratory muscle strength according to international and Brazilian guidelines. Braz J Phys Ther. 2014;18(5):410-8. http://dx.doi.org/10.1590/bjpt-rbf.2014.0044. PMid:25372003.
19. Fivez T, Hendrickx A, Van Herpe T, Vlasselaers D, Desmet L, Van den Berghe G, et al. An analysis of reliability and accuracy of muscle thickness ultrasonography in critically ill children and adults. J Parenter Enteral Nutr. 2016;40(7):944-9. http://dx.doi.org/10.1177/0148607115575033. PMid:25754437.
20. Fess EE. Grip strength. In: Casanova JS. Clinical assessment recommendations. 2nd ed. Chicago: American Society of Hand Therapists; 1992. p. 41-5.
21. Novaes RD, Miranda AS, Silva JO, Tavares BVF, Dourado VZ. Reference equations for predicting of handgrip strength in Brazilian middle-aged and elderly subjects. Fisioter Pesqui. 2009;16(3):217-22. http://dx.doi.org/10.1590/S1809-29502009000300005.
22. Jones CJ, Rikli RE, Beam WCA. 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport. 1999;70(2):113-9. http://dx.doi.org/10.1080/02701367.1999.10608028. PMid:10380242.
23. Tveter AT, Dagfinrud H, Moseng T, Holm I. Health-related physical fitness measures: reference values and reference equations for use in clinical practice. Arch Phys Med Rehabil. 2014;95(7):1366-73. http://dx.doi.org/10.1016/j.apmr.2014.02.016. PMid:24607837.
24. de Blasio F, Gregorio AD, Blasio F, Bianco A, Bellofiore B, Scalfia L. Malnutrition and sarcopenia assessment in patients with chronic obstructive pulmonary disease according to international diagnostic criteria, and evaluation of raw BIA variables. Respir Med. 2018;134:1-5. http://dx.doi.org/10.1016/j.rmed.2017.11.006. PMid:29413494.
25. Jacques SMC. Bioestatística: princípios e aplicações. 1. ed. Porto Alegre: Art Med; 2011.
26. Mathur S, Brooks D, Carvalho CR. Structural alterations of skeletal muscle in copd. Front Physiol. 2014;5:104. http://dx.doi.org/10.3389/fphys.2014.00104. PMid:24678302.
27. Benz E, Trajanoska K, Lahousse L, Schoufour JD, Terzikhan N, De Roos E, et al. Sarcopenia in COPD: a systematic review and meta-analysis. Eur Respir Rev. 2019;28(154):1-13. http://dx.doi.org/10.1183/16000617.0049-2019. PMid:31722892.
28. Takahashi T, Sugie M, Nara M, Koyama T, Obuchi SP, Harada K, et al. Femoral muscle mass relates to physical frailty components in communitydwelling older people. Geriatr Gerontol Int. 2017;17(10):1636-41. http://dx.doi.org/10.1111/ggi.12945. PMid:28124816.
29. Nijholt W, Scafoglieri A, Jager-Wittenaar H, Hobbelen JSM, Van der Schans CP. The reliability and validity of ultrasound to quantify muscles in older adults: a systematic review. J Cachexia Sarcopenia Muscle. 2017;8(5):702-12. http://dx.doi.org/10.1002/jcsm.12210. PMid:28703496.
30. Strandkvist VJ, Backman H, Röding J, Stridsman C, Lindberg A. Hand grip strength is associated with forced expiratory volume in 1 second among subjects with COPD: report from a population-based cohort study. Int J Chron Obstruct Pulmon Dis. 2016;11:2527-34. http://dx.doi.org/10.2147/COPD.S114154. PMid:27785009.
31. Kyomoto Y, Asai K, Yamada K, Okamoto A, Watanabe T, Hirata K, et al. Handgrip strength measurement in patients with chronic obstructive pulmonary disease: possible predictor of exercise capacity. Respir Investig. 2019;57(5):499-505. http://dx.doi.org/10.1016/j.resinv.2019.03.014. PMid:31085119.
32. Burtin C, Ter Riet G, Puhan MA, Waschki B, Garcia-Aymerich J, Pinto-Plata V, et al. Handgrip weakness and mortality risk in COPD: a multicentre analysis. Thorax. 2016;71(1):86-7. http://dx.doi.org/10.1136/thoraxjnl-2015-207451. PMid:26514408.
33. Ansari K, Keaney N, Taylor I, Burns G, Farrow M. Muscle weakness, health status and frequency of exacerbations in chronic obstructive pulmonary disease. Postgrad Med J. 2012;88(1041):372-6. http://dx.doi.org/10.1136/postgradmedj-2011-130293. PMid:22388793.
34. Medina-Mirapeix F, Bernabeu-Mora R, Sánchez-Martínez MP, GactoSánchez M, Martín San Agustín R, Montilla-Herrador J. Patterns and predictors of recovery from poor health status measured with the Chronic Obstructive Pulmonary Disease (COPD) assessment test in patients with stable copd: a longitudinal study. J Clin Med. 2019;7(4):946. http://dx.doi.org/10.3390/jcm8070946. PMid:31261894.
35. Stridsman C, Svensson M, Strandkvist VJ, Hedman L, Backman H, Lindberg A. The COPD Assessment Test (CAT) can screen for fatigue among patients with COPD. Ther Adv Respir Dis. 2018;12:1-10. http://dx.doi.org/10.1177/1753466618787380. PMid:30035671.
36. Santos K, Karloh M, Gulart AA, Munari AB, Mayer A. Relationship between peripheral and respiratory muscle strength and quality of life in patients with chronic obstructive pulmonary disease. Medicina. 2015;48(5):417-24.
37. Miravitlles M, Koblizek V, Esquinas C, Milenkovic B, Barczyk A, Tkacova R, et al. Determinants of CAT (COPD Assessment Test) scores in a population of patients with COPD in central and Eastern Europe: the POPE study. Respir Med. 2019;150:141-8. http://dx.doi.org/10.1016/j.rmed.2019.03.007. PMid:30961941.
38. Gulart AA, Munari AB, Queiroz AP, Cani KC, Matte DL, Mayer AF. Does the COPD assessment test reflect functional status in patients with COPD? Chron Respir Dis. 2017;14(1):37-44. http://dx.doi.org/10.1177/1479972316661924. PMid:27507835.
39. Bui KL, Nyberg A, Rabinovich R, Saey D, Maltais F. The relevance of limb muscle dysfunction in chronic obstructive pulmonary disease a review for clinicians. Clin Chest Med. 2019;40(2):367-83. http://dx.doi.org/10.1016/j.ccm.2019.02.013. PMid:31078215.
Submitted date:
11/19/2019
Accepted date:
02/27/2021