Cardiorespiratory Physiotherapy, Critical Care and Rehabilitation
https://cpcrjournal.org/article/doi/10.4322/2675-9977.cpcr.42568
Cardiorespiratory Physiotherapy, Critical Care and Rehabilitation
Original Research

Analysis of heart rate variability and accelerometry in patients following surgery for the treatment of gastrointestinal cancer

Maria Cláudia Valente Almeida, Débora Carolina Santos do Nascimento, Laura Maria Tomazi Neves, Juliana Fernandes Dias, Anselmo de Athayde Costa e Silva, Luana Estumano Longhi Bastos, Saul Rassy Carneiro

Downloads: 3
Views: 306

Abstract

Gastrointestinal cancer is the most prevalent form of cancer worldwide. Surgical treatment interferes with functionality and increases the length of hospital stay. However, studies have shown that early mobilization reduces the length of hospital stay. Aim: To determine the cardiovascular safety and intensity of an adapted protocol for early mobilization in patients following surgery for the treatment of gastrointestinal cancer. Methods: An observational, cross-sectional study was conducted with 24 individuals: 15 in the case group (cancer patients in the post-operative period) and nine in the control group (hospitalized patients without cancer). All participants were submitted to a standardized early mobilization physiotherapeutic protocol. A portable heart rate monitor and accelerometer were used to obtain data on heart rate variability (HRV), analyzing the variables ‘interval between consecutive beats’ (RR), ‘mean heart rate’ (HR), ‘standard deviation from mean of all normal RR intervals’ (SDNN), ‘square root of mean of square of differences between consecutive RR intervals’ (RMSSD), ‘number of RR intervals’ (NN50) and ‘percentage of adjacent RR intervals with difference in duration greater than 50 ms’ (pNN50), and the intensity of physical activity (IPA), analyzing metabolic equivalents (METS), before and after the intervention. Data analysis involved the Student’s t-test for the comparison of data with parametric distribution and the Mann-Whitney U test for variables with non-parametric distribution. Results: No statistically significant differences in energy expenditure or IPA percentages were found between groups. Moreover, no significant difference in HRV occurred in the case group, whereas differences in RR, HR and pNN50 variables were found in the control group. Conclusions: Early mobilization for patients following surgery for the treatment of gastrointestinal cancer can be performed without increasing HRV and with energy expenditure and IPA similar to those found in patients without cancer.

Keywords

Gastrointestinal Neoplasms; Accelerometry; Early Mobilization; Physiotherapy techniques; Heart rate determination.

References

1. Xue DD, Cheng Y, Wu M, Zhang Y. Comprehensive geriatric assessment prediction of postoperative complications in gastrointestinal cancer patients: a meta-analysis. Clin Interv Aging. 13:723-36. http://dx.doi.org/10.2147/CIA.S155409.
2. Zhang L, Song X, Li X, Wu C, Jiang J. Yes-associated protein 1 as a novel prognostic biomarker for gastrointestinal cancer: a meta-analysis. BioMed Res Int. 2018:4039173. http://dx.doi. org/10.1155/2018/4039173.
3. De GN, Olmos M, Calleja A, Campos C, Pérez A, Cruz D, et al. Nutrición Hospitalaria Trabajo Original. Nutr Hosp. 2019;34(1):15-8.
4. Lee TG, Kang SB, Kim DW, Hong S, Heo SC, Park KJ. Comparison of early mobilization and diet rehabilitation program with conventional care after laparoscopic colon surgery: a prospective randomized controlled trial. Dis Colon Rectum. 2011 Jan;54(1):21-8. http://dx.doi.org/10.1007/DCR.0b013e3181fcdb3e. PMid:21160309.
5. Carvalho JB, Salgado NA, Silva ACM, Ramos EMLS, Demachki S, Araujo MS. Fatores de risco socioambientais e nutricionais envolvidos na carcinogênese gástrica. Rev. para. med = Rev. Para. Med. (Impr.). [Internet]. 2011 [cited 2019 July 26];25(2/3):1-9. Avaliable from: http://bases.bireme.br/cgi-bin/ wxislind.exe/iah/online/ ?IsisScript=iah/ iah.xis&src=google&base= LILACS&lang=p&nextAction=lnk&exprSearch= 621063&indexSearch=ID
6. Vermillion SA, James A, Dorrell RD, Brubaker P, Mihalko SL, Hill AR, et al. Preoperative exercise therapy for gastrointestinal cancer patients: a systematic review. Syst Rev. 2018 Jul 24;7(1):103. http://dx.doi.org/10.1186/s13643-018-0771-0. PMid:30041694.
7. Adão R, De Keulenaer G, Leite-Moreira A, Brás-Silva C. Cardiotoxicidade associada à terapêutica oncológica: mecanismos fisiopatológicos e estratégias de prevenção. Rev Port Cardiol.32(5):395-409. http://dx.doi.org/10.1016/j.repc.2012.11.002.
8. Kalil R Fo, Hajjar LA, Bacal F, Hoff PM, Diz MP, Galas FRBG. I Diretriz Brasileira de Cardio-Oncologia da Sociedade Brasileira de Cardiologia. Arq Bras Cardiol. 2011;96(2 Suppl 1):1-52. http://dx.doi.org/10.1590/S0066-782X2011000700001. PMid:21468528.
9. Onerup A, Angenete E, Bock D, Börjesson M, Fagevik Olsén M, Grybäck Gillheimer E, et al. The effect of pre- and post-operative physical activity on recovery after colorectal cancer surgery (PHYSSURG-C): study protocol for a randomised controlled trial. Trials. 2017 May 8;18(1):212. http://dx.doi.org/10.1186/s13063-017-1949-9. PMid:28482864.
10. Thraen-Borowski KM, Gennuso KP, Cadmus-Bertram L. Accelerometer-derived physical activity and sedentary time by cancer type in the United States. PLoS One. 2017 Aug 14;12(8):e0182554. http://dx.doi.org/10.1371/journal.pone.0182554. PMid:28806753.
11. van Der Leeden M, Huijsmans R, Geleijn E, De Lange-De Klerk ES, Dekker J, Bonjer HJ, et al. Early enforced mobilisation following surgery for gastrointestinal cancer: feasibility and outcomes. Physiotherapy. 2016 Mar;102(1):103-10. http://dx.doi.org/10.1016/j.physio.2015.03.3722. PMid:26059985.
12. avey R, Herriman E, O’Brien D. Guarding the gut: early mobility after abdominal surgery. Crit Care Nurs Q. 2013 Jan-Mar;36(1):63-72. http://dx.doi.org/10.1097/CNQ.0b013e3182753237. PMid:23221443.13. Cassidy M, Rosenkranz P, McAneny D. Reducing postoperative venous thromboembolism complications with a standardized risk-stratified prophylaxis protocol and mobilization program. Am Coll Surg. 218(6):1095-104. http://dx.doi.org/10.1016/j.jamcollsurg.2013.12.061.
14. Rocha ARM, Martinez BP, Silva VZM, Forgiarini LA Jr. Early mobilization: why, what for and how? Med Intensiva. 2017 Oct;41(7):429-36. http://dx.doi.org/10.1016/j.medin.2016.10.003.
PMid:28283324.
15. Hanada M, Kanetaka K, Hidaka S, Taniguchi K, Oikawa M, Sato S, et al. Effect of early mobilization on postoperative pulmonary complications in patients undergoing video-assisted thoracoscopic surgery on the esophagus. Esophagus. 15(2):69-74. https://doi.org/10.1007/s10388-017-0600-x.
16. Hussey JM, Yang T, Dowds J, O’Connor L, Reynolds JV, Guinan EM. Quantifying postoperative mobilisation following oesophagectomy. Physiotherapy. 2019 Mar;105(1):126-33. http://dx.doi.org/10.1016/j.physio.2018.08.004. PMid:30343873.
17. Lopes PFF, Oliveira MIB, André SMS, Nascimento DLA, Silva CSS, Rebouças GM, et al. Aplicabilidade Clínica da Variabilidade da Frequência Cardíaca. Revista Neurociências. 2013;21(4):600-3. http://dx.doi.org/10.34024/rnc.2013.v21.8171.
18. Sasaki J, Coutinho A, Santos C, Bertuol C, Minatto G, Berria J, et al. Orientações para utilização de acelerômetros no Brasil. Rev Bras Ativ Fís Saúde. 2017;22(2):110-26. https://doi.org/10.12820/rbafs.v.22n2p110-126.
19. Rêgo MAV. Estudos caso-controle: uma breve revisão. GMBahia. [Internet]. 2010 [cited 2019 Aug 1];80:101-10. Avaliable from: http://www.gmbahia.ufba.br/index.php/gmbahia/article/view/1089
20. Aadland E, Ylvisåker E. Reliability of the actigraph GT3X+ accelerometer in adults under free-living conditions. PLoS One. 2015 Aug 14;10(8):e0134606. http://dx.doi.org/10.1371/journal. pone.0134606. PMid:26274586.
21. Feehan LM, Goldsmith CH, Leung AY, Li LC. SenseWearMini and actigraph GT3X accelerometer classification of observed sedentary and light-intensity physical activities in a laboratory setting. Physiother Can. 2016;68(2):116-23. http://dx.doi.org/10.3138/ptc.2015-12.PMid:27909358.
22. Gastin PB, Cayzer C, Dwyer D, Robertson S. Validity of the ActiGraph GT3X+ and BodyMedia SenseWear Armband to estimate energy expenditure during physical activity and sport. J Sci Med Sport. 2018 Mar;21(3):291-5. http://dx.doi.org/10.1016/j.jsams.2017.07.022. PMid:28797831.
23. Vanderlei FM, Rossi RC, Souza NM, Sá DA, Gonçalves TM, Pastre CM et al. Heart rate variability in healthy adolescents at rest. Rev Bras Crescimento Desenvolv Hum. [Internet]. 2012 [cited 2019 July 26];22(2):173-8. Available from: http://pepsic.bvsalud.org/scielo. php?script=sci_arttext&pid=S0104-12822012000200008
24. Reis HV, Borghi-Silva A, Catai AM, Reis MS. Impact of CPAP on physical exercise tolerance and sympathetic-vagal balance in patients with chronic heart failure. Braz J Phys Ther. 2014;18(3):218-27. http://dx.doi.org/10.1590/bjpt-rbf.2014.0037. PMid:25003274.
25. Khalid MA, Achakzai IK, Ahmed Khan S, Majid Z, Hanif FM, Iqbal J, et al. The use of Karnofsky Performance Status (KPS) as a predictor of 3 month post discharge mortality in cirrhotic patients. Gastroenterol Hepatol Bed Bench. 2018;11(4):301-5. PMid:30425808.
26. Thuluvath PJ, Thuluvath AJ, Savva Y. Karnofsky performance status before and after liver transplantation predicts graft and patient survival. J Hepatol. 2018 Oct;69(4):818-25. http://dx.doi.org/10.1016/j.jhep.2018.05.025. PMid:29883596.
27. Morris PE, Goad A, Thompson C, Taylor K, Harry B, Passmore L, et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med. 2008 Aug;36(8):2238-43. http://dx.doi.org/10.1097/CCM.0b013e318180b90e. PMid:18596631.
28. Demark-Wahnefried W, Rogers LQ, Alfano CM, Thomson CA, Courneya KS, Meyerhardt JA, et al. Practical clinical interventions for diet, physical activity, and weight control in cancer survivors. CA Cancer J Clin. 2015 May-Jun;65(3):167-89. http://dx.doi.org/10.3322/caac.21265. PMid:25683894.
29. Oruç Z, Kaplan MA. Effect of exercise on colorectal cancer prevention and treatment. World J Gastrointest Oncol. 2019 May 15;11(5):348-66. http://dx.doi.org/10.4251/wjgo.v11.i5.348. PMid:31139306.
30. Broderick JM, Ryan J, O’Donnell DM, Hussey J. A guide to assessing physical activity using accelerometry in cancer patients. Support Care Cancer. 22(4):1121-30.  https://doi.org/10.1007/s00520-013-2102-2.
31. Chang IY, Yi ES. The influence of environmental constraints within hospitals on physical activity level of cancer patients. J Exerc Rehabil. 2018 Jun 30;14(3):382-6. http://dx.doi.org/10.12965/jer.1836240.120. PMid:30018922.
32. Kim JY, Jeon SW, Yi ES. A study of the physical activity restriction in the cancer patients using hierarchical regression analysis. J Exerc Rehabil. 2018 Oct 31;14(5):835-43. http://dx.doi.org/10.12965/jer.1836380.190. PMid:30443531.
33. Dericioglu N, Demirci M, Cataltepe O, Akalan N, Saygi S. Heart rate variability remains reduced and sympathetic tone elevated after temporal lobe epilepsy surgery. Seizure. 2013 Nov;22(9):713-8. http://dx.doi.org/10.1016/j.seizure.2013.05.007. PMid:23746623.
34. Mostarda C, Castro-Filha J, Reis AD, Sevílio M Jr, Dias CJ, SilvaFilho AC, et al. Short-term combined exercise training improves cardiorespiratory fitness and autonomic modulation in cancer patients receiving adjuvant therapy. J Exerc Rehabil. 2017 Oct 30;13(5):599-607. http://dx.doi.org/10.12965/jer.1735048.524. PMid:29114536.
35. Shin HC, Yang JO, Kim SR. Effects of circuit exercise on autonomic nerve system of survivors after surgery of breast cancer. J Phys Ther Sci. 2016 Oct;28(10):2898-903. http://dx.doi.org/10.1589/jpts.28.2898. PMid:27821958.
36. McDonald L, Oguz M, Carroll R, Thakkar P, Yang F, Dhalwani N, et al. Comparison of accelerometer-derived physical activity levels between individuals with and without cancer: a UK Biobank study. Future Oncol. 2019 Nov;15(33):3763-74. http://dx.doi.org/10.2217/fon-2019-0443. PMid:31637942.


Submitted date:
02/07/2021

Accepted date:
12/14/2021

61e6d9a9a953954427242872 cpcr Articles
Links & Downloads

Cardiorespir Physiother Crit Care Rehabil

Share this page
Page Sections